Rechercher dans ce blog

Wednesday, March 10, 2021

Perseverance Rover's SuperCam Science Instrument Delivers First Results – NASA's Mars Exploration Program - NASA Mars Exploration


Data from the powerful science tool includes sounds of its laser zapping a rock in order to test what it’s made of.


The first readings from the SuperCam instrument aboard NASA’s Perseverance rover have arrived on Earth. SuperCam was developed jointly by the Los Alamos National Laboratory (LANL) in New Mexico and a consortium of French research laboratories under the auspices of the Centre National d’Etudes Spatiales (CNES). The instrument delivered data to the French Space Agency’s operations center in Toulouse that includes the first audio of laser zaps on another planet.

This image shows a close-up view of the rock target named “Máaz” from the SuperCam instrument on NASA’s Perseverance Mars rover. It was taken by SuperCam’s Remote Micro-Imager (RMI). “Máaz” means Mars in the Navajo language.
SuperCam Close-Up of ‘Máaz’: This image shows a close-up view of the rock target named “Máaz” from the SuperCam instrument on NASA’s Perseverance Mars rover. It was taken by SuperCam’s Remote Micro-Imager (RMI). “Máaz” means Mars in the Navajo language.. Credits: NASA/JPL-Caltech/LANL/CNES/CNRS. Full image and caption ›

“It is amazing to see SuperCam working so well on Mars,” said Roger Wiens, the principal investigator for Perseverance’s SuperCam instrument from Los Alamos National Laboratory in New Mexico. “When we first dreamed up this instrument eight years ago, we worried that we were being way too ambitious. Now it is up there working like a charm.”

“The sounds acquired are remarkable quality,” says Naomi Murdoch, a research scientist and lecturer at the ISAE-SUPAERO aerospace engineering school in Toulouse. “It’s incredible to think that we’re going to do science with the first sounds ever recorded on the surface of Mars!”

On March 9, the mission released three SuperCam audio files. Obtained only about 18 hours after landing, when the mast remained stowed on the rover deck, the first file captures the faint sounds of Martian wind.

First Audio Recording of Sounds on Mars: This recording was made by the SuperCam instrument on NASA’s Perseverance Mars rover on Feb. 19, 2021, just about 18 hours after landing on the mission’s first sol or Martian day. The rover’s mast, holding the microphone, was still stowed on Perseverance’s deck, and so the sound is muffled, a little like the sound one hears listening to a seashell or having a hand cupped over the ear. Just a little wind can be heard. Credits: NASA/JPL-Caltech/LANL/CNES/CNRS/ISAE-Supaero. Download audio ›

The wind is more audible, especially around the 20-second mark, in the second sound file, recorded on the rover’s fourth Martian day, or sol.

Perseverance Rover’s SuperCam Records Wind on Mars: This recording was made on Feb. 22, 2021, on the fourth sol (Martian day) by the SuperCam instrument on NASA’s Perseverance rover after deployment of the rover’s mast. It provides a different overall sound than the SuperCam audio recording from the mission’s first sol. Some wind can be heard, especially around 20 seconds into the recording. Rover background sounds have been removed. Credits: NASA/JPL-Caltech/LANL/CNES/CNRS/ISAE-Supaero. Download audio ›

SuperCam’s third file, from Sol 12, includes the zapping sounds of the laser impacting a rock target 30 times at a distance of about 10 feet (3.1 meters). Some zaps sound slightly louder than others, providing information on the physical structure of the targets, such as its relative hardness.

First Acoustic Recording of Laser Shots on Mars: This is the first acoustic recording of laser impacts on a rock target on Mars from March 2, 2021, the 12th sol (Martian day) from Perseverance’s SuperCam instrument. The sounds of 30 impacts are heard, some slightly louder than others. Variations in the intensity of the zapping sounds will provide information on the physical structure of the targets, such as its relative hardness or the presence of weathering coatings. The target, Máaz (“Mars” in Navajo), was about 10 feet (3.1 m) away. Credits: NASA/JPL-Caltech/LANL/CNES/CNRS/ISAE-Supaero. Download audio ›

“I want to extend my sincere thanks and congratulations to our international partners at CNES and the SuperCam team for being a part of this momentous journey with us,” said Thomas Zurbuchen, associate administrator for science at NASA Headquarters in Washington. “SuperCam truly gives our rover eyes to see promising rock samples and ears to hear what it sounds like when the lasers strike them. This information will be essential when determining which samples to cache and ultimately return to Earth through our groundbreaking Mars Sample Return Campaign, which will be one of the most ambitious feats ever undertaken by humanity.”

The SuperCam team also received excellent first datasets from the instrument’s visible and infrared (VISIR) sensor as well as its Raman spectrometer. VISIR collects light reflected from the Sun to study the mineral content of rocks and sediments. This technique complements the Raman spectrometer, which uses a green laser beam to excite the chemical bonds in a sample to produce a signal depending on what elements are bonded together, in turn providing insights into a rock’s mineral composition.

“This is the first time an instrument has used Raman spectroscopy anywhere other than on Earth!” said Olivier Beyssac, CNRS research director at the Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie in Paris. “Raman spectroscopy is going to play a crucial role in characterizing minerals to gain deeper insight into the geological conditions under which they formed and to detect potential organic and mineral molecules that might have been formed by living organisms.”

SuperCam Calibration Target on Mars
SuperCam Calibration Target on Mars: Stitched together from five images, this mosaic shows the calibration target for the SuperCam instrument aboard NASA’s Perseverance rover on Mars. The component images were taken by SuperCam’s remote micro-imager (RMI). Credits: NASA/JPL-Caltech/LANL/CNES/CNRS. Full image and caption ›
More About the Mission

SuperCam is led by Los Alamos National Laboratory in New Mexico, where the instrument's Body Unit was developed. That part of the instrument includes several spectrometers, control electronics and software.

The Mast Unit was developed and built by several laboratories of the CNRS (French National Centre for Scientific Research) and French universities under the contracting authority of CNES. Calibration targets on the rover deck are provided by Spain’s University of Valladolid.

A key objective for Perseverance’s mission on Mars is astrobiology, including the search for signs of ancient microbial life. The rover will characterize the planet’s geology and past climate, pave the way for human exploration of the Red Planet, and be the first mission to collect and cache Martian rock and regolith (broken rock and dust).

Subsequent NASA missions, in cooperation with ESA (European Space Agency), would send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for in-depth analysis.

The Mars 2020 Perseverance mission is part of NASA’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet.

JPL, which is managed for NASA by Caltech in Pasadena, California, built and manages operations of the Perseverance rover.

For more about Perseverance:

mars.nasa.gov/mars2020/

nasa.gov/perseverance

News Media Contacts

DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
agle@jpl.nasa.gov

Alana Johnson / Grey Hautaluoma
NASA Headquarters, Washington
202-672-4780 / 202-358-0668
alana.r.johnson@nasa.gov / grey.hautaluoma-1@nasa.gov

Raphaël Sart
Centre National d’Etudes Spatiales, Paris
+33 (0)1 44 76 74 51
raphael.sart@cnes.fr

Let's block ads! (Why?)

Article From & Read More ( Perseverance Rover's SuperCam Science Instrument Delivers First Results – NASA's Mars Exploration Program - NASA Mars Exploration )
https://ift.tt/3vgYnSC
Science

No comments:

Post a Comment

Search

Featured Post

NASA's Europa Clipper probe deploys 1st science instruments en route to Jupiter - Space.com

[unable to retrieve full-text content] NASA's Europa Clipper probe deploys 1st science instruments en route to Jupiter    Space.com G...

Postingan Populer